Unit 1 -- Introduction, Metrics, Motion, Velocity

I. Introduction

- A. What is Physics?
 - 1. study of matter and energy and how they are related
 - 2. closely tied to chemistry and astronomy
 - 3. also used in earth and life sciences
 - 4. divided into many areas
 - a. motion, waves energy, force electricity, magnetism, nuclear, quantum
- B. Scientific Method
 - 1. Define problem
 - 2. Research
 - 3. Form hypothesis
 - 4. Test hypothesis
 - a. experimentation
 - i. control -- left as normal, comparison
 - ii. variable -- changed by experimenter, tested
 - b. record data
 - 5. Analyze data
 - 6. Check Hypothesis
 - 7. Repeat
 - 8. Conclude and Report
- C. Measurements
 - 1. Use the SI (metric) system for measuring
 - 2. easier to convert
 - a. based on 10
 - b. all prefixes are the same
 - 3. basic units

meter Newton liter/cubic meter Joule gram Second

- ° Celsius/Kelvin
- 4. Prefixes
 - a. kilo deci milli micro nano

- 5. Accuracy vs precision
 - a. accuracy = how close to correct
 - b. precision = how close to other measurements
- D. Problem solving
 - 1. Use lots of math -- algebra, trigonometry, some advanced math
 - 2. Write down all known information
 - 3. Write down what you are looking for
 - 4. If converting, use the factor-label method (unit multipliers)
 - 5. If solving, find workable equation with only one unknown variable
 - 6. plug in knowns and solve

WS -- conversion

WS -- unit multipliers

LAB -- Measurements and Density -- accuracy, precision, conversions

- II. Vectors
 - A. representation of motion or direction of forces
 - 1. shown with an arrow

length = size, head = direction

- 2. can add
 - a. if in the same plane

same direction = add

opposite = subtract

- b. redraw as one vector
- 3. if not in the same plane, use trigonometry to solve -- draw with right angles
 - a. SOH CAH TOA
 - b. use drawings to show relationships
 - c. redraw when done

WS -- Vectors

III. Motion

A. Speed

```
1. s = distance/time (s = d/t)
```

2. 3 types

instantaneous

average

constant

B. Velocity

- 1. v = displacement/time (v = disp./t) displacement = distance from starting point + direction
- 2. 3 types

instantaneous

average

constant

3. must include direction in the unit

C. Acceleration

- 1. change in velocity
- 2. three ways to change
 - a. speed up -- positive acceleration
 - b. slow down -- negative acceleration
 - c. turn
- 3. $a = \Delta velocity/time (a = \Delta v/t = (v_f v_i)/t$